
Microservices and DevOps

Scalable Microservices
The Microservice Architectural Style

Henrik Bærbak Christensen



Designing MS Architectures?

• The challenge:

• We have the MS definition

– All those benefits (and liabilities)

• What’s next then???

• How to ‘do it’?

CS@AU Henrik Bærbak Christensen 2

Our Take: A set of central concepts in the 
architectural design process.

Overlap with SAiP fagpakke☺



Architectural Style

• Similar to architectural pattern and out of fashion, but I do 

like the different perspective and the conceptual 

framework it brings along:

• Architectural Style: 

– Set of element types (components)

– Set of interaction mechanism (connectors) 

– Topology of components

– Semantic constraints

• Exercise:

– Client-server ?

CS@AU Henrik Bærbak Christensen 3



Relation To Def

• Actual the definition is quite precise about a subset of the 

defining characteristics of the

• The Microservice Architectural Style

– Components, Connectors, Topology, Semantic constraints

CS@AU Henrik Bærbak Christensen 4



Relation to Def

• The Microservice Architectural Style

– Components, Connectors, Topology, Semantic constraints

CS@AU Henrik Bærbak Christensen 5



Aspects



Coupling and Cohesion

So old, and so difficult to get right

‘it is all about role boundaries’



Larry Constantine

CS@AU Henrik Bærbak Christensen 8

• Late 1960’ies formulation

– Coupling

• The antidote:

– Information Hiding

• David Parnas

– Encapsulation

• An inside and outside

• Shaw

– It is not the functionality per se, it is the packing



Packaging

CS@AU Henrik Bærbak Christensen 9

• To rephrase the previous software reuse historical 

treatment, much of every new tech-hype has been about 

a new scheme for packing software into a deploy unit

– Modules (modula 2) : Language packaging

– Objects (simula/smalltalk) : Language packaging

– CBS: Static deployments

– SOA: Dynamic deployments

– Microservices: Dynamic deployments at scale

• Note that packing does not really help on coupling



An OO Experience

• My early OO experience usually ended in one of two 

places

– A mesh of highly interconnected objects 

– A god class that starved any other object from behavior 

• The Mediator Pattern

– Intent: Object that encapuslates how a set of objects interact. 

Mediator promotes loose coupling by keeping objects from 

referring to each other explicitly, and lets you vary their interaction 

independently.

– Head On book: Centralize complex control and data flow between 

related objects

CS@AU Henrik Bærbak Christensen 10



Visually

• Replace high interconnectivity with central Mediator

CS@AU Henrik Bærbak Christensen 11

Liability: Is what???



API Gateway pattern

• API Gateway 

patterns is 

essentially the ‘out-

of-process’ 

equivalent to the 

Mediator.

• SkyCave: Who plays 

the Mediator role?

• But note:

– Smart services, 

dumb connectors !

CS@AU Henrik Bærbak Christensen 12

Richardson, p 261



Compositional Principles

The old GoF

principles of reusable design



Worth Mentioning

• Principle 1:

• Program to an interface, not implementation

– Make a clear contract between supplier and consumer

• Principle 2:

• Favor object composition, over class inheritance

– Make system as composition of services

CS@AU Henrik Bærbak Christensen 14



Bounded Contexts

From Domain Driven Design

(DDD) by Eric Evans…

Newman §3



Bounded Contexts

• Domain = Set of bounded contexts.

– Bounded context = model elements that are private plus model 

elements that are shared externally with other BCs.

– Bounded context = specific responsibility enforced by explicit 

boundaries

– Request to BC through shared models on explicit boundary

– Analogy with living cells – membranes define what can pass

CS@AU Henrik Bærbak Christensen 16

Eric Evans: Domain-Driven Design Book



MusicCorp Example

CS@AU Henrik Bærbak Christensen 17

• BC: Finance and Warehouse

• Shared model: Stock Item

– However: full stock object not relevant for finance

• Shelf location has no meaning to finance, only value and count

– Stock has both an 

internal (hidden)

and external

(shared)

representation



Definition?

• Shared Model: A subset of a model, containing only 

properties relevant for a given, external, bounded context 

[My take on a definition].

• Example:

– A ‘return’

• Customer context: print return label, await refund

• Warehouse context: package that will arrive, restocking

• Discussion

– I guess it means there can be several ‘shared models’ for a 

concept

• Stock Item for Warehouse, Finance, Customer, …

CS@AU Henrik Bærbak Christensen 18



On a more Language Level

• One way of exchange models on BC boundary

– HTTP GET that JSON object from the service

– Broker ‘List<PODO> getListOfMessages()’ in ChatRoom object, 

where client has a ChatRoomClientProxy

– Subscribe to ProtoBuf encoded binary object from RabbitMQ on 

topic using routing key: ‘*.measurements.aarhus’

• Models are PlainOldDataObjects/PODOs.

– Optionally with abstract references ala foreign keys

• For further exchange of ‘models’ that represent these sub PODOs
CS@AU Henrik Bærbak Christensen 19



BC as Modules

• Bounded contexts form module (CC view: Component) 

boundaries

– Module = classic static/compile time software unit, with explicit 

interface(s), Facade pattern

• Excellent candidates for later microservices!

– Monolith first tactic. Avoid premature decomposition

– Why

• API refactorings are extremely slow in the remote case…

CS@AU Henrik Bærbak Christensen 20



Compare OO Perspective

• OOA and OOD

– The obvious old OO way: 

• StockItem Warehouse::getAllItems()

• Liabilities

– Expose internal

warehouse details

– Hard binding through

object reference(s)

CS@AU Henrik Bærbak Christensen 21



Compare OO Perspective

• Fowler ‘BoundedContext’ paper

• WarStory: EPJ domain…

– GEPJ

– HL7 and CDA

CS@AU Henrik Bærbak Christensen 22



Business Capabilities

• Fowler: Organized around business capabilities

• Bounded contexts provide services to each other

– Warehouse: get stock list

– Finance: set up payroll for new employee

• Shared models contain the information exchanged

• Hidden models (= internal/full models) candidates for the 

data management layer

CS@AU Henrik Bærbak Christensen 23



Decomposition

• BCs can be a composition of sub BCs

– Heard it before ☺?

• Consider org. Boundaries

– If different teams/groups

it may make more sense

to go for decomposition

– Conway’s law…

• Consider testing

– Nested appr. means less

test doubles…

CS@AU Henrik Bærbak Christensen 24



Domains are Stable

• One of the first rules of OO design I learned:

– “Domains are more stable than user requests to UI and 

functionality”

– OO modeling was highly ‘domain modeling’

• OOA

• DDD and BC are founded in the same ‘truth’

– Business changes more likely to be isolated to a single BC

• I do not completely agree…

CS@AU Henrik Bærbak Christensen 25



Roles and Responsibilities

Loosening the Boundaries from the 

Domain

CS@AU Henrik Bærbak Christensen 26



Much Bounded Context Hype

• Every Microservice book I look into has chapters on DDD 

and Bounded Contexts.

• Which is rooted in the domain model!

• I am old enough to have seen that before:

• Object Oriented Analysis and Design

– Talk to customers and write down the nouns. These are the 

classes. Then write down the verbs that are associated with 

these nouns. These are the methods.

• Experience then showed that it was a lot of bullsh…
CS@AU Henrik Bærbak Christensen 27



Domain is not All

• Domain classes are important but there are so much 

more to complex software systems than domain 

concepts.

• Example: 

– 2016 SkyCave consists of 97 classes. Only three of them are 

domain classes!

– Rest is about:

• Distribution

• Persistence

• Variability Management

• Dependency injection

• QA, like availability, performance, …

CS@AU Henrik Bærbak Christensen 28



Domain is not All !

• Large classes of important software designs cannot be 

explained from a purely Domain focus!

• Example: Design Patterns

– Strategy pattern: 

• Encapsulate algorithm and let it vary independently of consumer

• Absolutely no counterpart in any domain

– And still a central software architectural tool in the architect’s 

toolbox

CS@AU Henrik Bærbak Christensen 29



Stronger Conceptual Framework

• Roles, Responsibilities, Behavior,

and Protocol

• Not 

– The Order Concept

• But

– The responsibilities associated with

handling an Order

• Leads to more fine-grained 

abstractions

• More ‘-able’ than noun interfaces

CS@AU Henrik Bærbak Christensen 30



The Central definitions

• The central concepts:

– Behaviour: What actually is being done

• ”Henrik sits Sunday morning and writes these slides”

– Responsibility: Being accountable for answering request

• ”Henrik is responsible for teaching responsibility-centric design”

– Role: A function/part performed in particular process

• ”Henrik is the course teacher”

– Protocol: Convention detailing the expected sequence of 

interactions by a set of roles

• ”Teacher: ‘Welcome’ => Students: stops talking and starts listening”

CS@AU Henrik Bærbak Christensen 31



I see the Trend Already

• FaaS: Function as a Service

– A Responsibility that is set free from its prison in a bounded 

context, or a domain concept.

• The Strategy Pattern in a new Packaging!

• Roles are often invented independent of domain, as just 

a cohesive collections of responsibilities

– Kindergarten example: The Flyer role…

– Car example: Is it an umbrella? Is it umbrella behavior?

– (anyone read Larman? ‘Pure Fabrication’ principle)

CS@AU Henrik Bærbak Christensen 32



So…

• Bounded Contexts and DDD are fine starting points

– Just as domain understanding was it in OOA and OOD

• But do not let it restrict you

• Think 

– Roles = responsible for cohesive part in particular process 

(or responsible for a service to the community!)

• Microservices should perform roles, and use a protocol to 

exchange control and data (shared models)

CS@AU Henrik Bærbak Christensen 33



DRY or Not DRY

Do not Repeat Yourself

Or maybe you should ☺ !



DRY

• Step five of the TDD rhythm

– Step 5: Refactor to remove duplication

• Duplicated code is root of all evil

– Dual maintenance, fixing a bug once-and-for-all is very difficult, 

etc. etc. etc.

• Then what about the shared models? And connector 

implementations/client libraries

CS@AU Henrik Bærbak Christensen 35



SkyCave Example

• The battle-hardened quote service

• Why not have a shared library with the quote PODO?

– Class quotePodo { String author; String quote; int index; int 

statuscode; }

CS@AU Henrik Bærbak Christensen 36



DRY downside

• You create hard bindings in the form of shared library 

dependencies

– Both producer and consumer depend upon quote-lib:1.7.3

– May create ‘lock-step’ versioning

• Library update propagages across all services

– AntiPattern: The Distributed Monolith

– Begins to dictate the programming language ☺

• Cannot import maven libs in python, to my knowledge

• Bottomline: Relaxed about DRY across service boundaries

– Programming level: Do not put the ‘shared models’ in shared libs !

CS@AU Henrik Bærbak Christensen 37



Connectors

• What about library implementations of connectors?

– Aka ‘client libraries’?

• Example: Our ‘RealQuoteService’ implementation – why 

did I not just hand it out to you?

– (Would be an easy exercise, then ☺)

• Newman

– Risk of server logic creeping into the connector logic

• Example of ‘it works’

– Amazon Web Service SDK 

• Client lib for the AWS REST api

– But developed by other team + community, not the AWS team !!!

CS@AU Henrik Bærbak Christensen 38



Monolith First Pattern



Fowler

CS@AU Henrik Bærbak Christensen 40



My Opinion

• Right, I agree totally

– Tool support so much better for in-process communication

– YAGNI principle (you ain’t gonna need it)

• But, still

– As service boundaries starts to materialize, I think it makes sense 

to start to apply the architectural style along the boundary, alas

• Order order = coffeeshop.createOrder(Type.Latte, …);

• May become something like (REST’ifying the communication)

• OrderModel orderModel = new OrderModel(Type.Latte, …);

• OrderResult result = coffeeshop.serviceCall(ORDER, orderModel);

• Order order = result.getOrder();

– That is, ‘Order’ without any deep references. Only a PODO!

CS@AU Henrik Bærbak Christensen 41



My Opinion

• Objection to this opinion

– You have no transparency, why not encapsulate the concrete 

connector style? This code smells RESTish, right?

• It is a really good objection, but…

• From an architectural standpoint it is highly important to 

be explicit when a connector is out-of-process

– Nygard: Integration point

• Must be analyzed in terms of availability, performance, security, …

• I have to code time-outs, circuit breakers, chunky 

interface, …, for these connectors! No transparency 

anyway!

CS@AU Henrik Bærbak Christensen 42



Outlook



Hexagonal Architectures

• Alternative to layered style

CS@AU Henrik Bærbak Christensen 44



Visually

• Benefits

– BL independent of

presentation and

data access

– Easier testing /

decoupling

– Often need for many

e.g. UI adapters (web,

mobile app, legacy, ..)

anyway

CS@AU Henrik Bærbak Christensen 45



So…

• What has that to do with microservice architectures?

• Nothing, excepts as another way of structuring the kind of 

applications that most often are candiates for micro 

service architectures ☺

CS@AU Henrik Bærbak Christensen 46



Pattern Languages



Recommendable Book

CS@AU Henrik Bærbak Christensen 48



Recent Analysis

By Peter Daugaard Rasmussen

CS@AU Henrik Bærbak Christensen 49



CS@AU Henrik Bærbak Christensen 50



CS@AU Henrik Bærbak Christensen 51



CS@AU Henrik Bærbak Christensen 52



Summary



Software Architecture…

• … is difficult !

• One definition 

– (forgot the author, and is probably misquoting)

– The things we wished we had done differently ☺

• IMO it is about ‘cutting the cake in the right way’

– Part the ‘whole’ into ‘suitable’ pieces that collaborate

– Usually, no ‘right way’ just ‘less bad ways’ to pick from…


