/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
The Microservice Architectural Style

Henrik Baerbak Christensen

/v Designing MS Architectures?

AARHUS UNIVERSITET
* The challenge:

 We have the MS definition
— All those benefits (and liabilities)

 What's next then???

Our Take: A set of central concepts in the

architectural design process.
e How to ‘do it’? Overlap with SAiP fagpakke ©

CS@AU Henrik Beerbak Christensen 2

/v Architectural Style

AARHUS UNIVERSITET

« Similar to architectural pattern and out of fashion, but | do
like the different perspective and the conceptual
framework it brings along:

« Architectural Style:
— Set of element types (components)
— Set of interaction mechanism (connectors)
— Topology of components
— Semantic constraints

« EXxercise:
— Client-server ?

VeV Relation To Def

AARHUS UNIVERSITET

« Actual the definition is quite precise about a subset of the
defining characteristics of the

« The Microservice Architectural Style
— Components, Connectors, Topology, Semantic constraints

eV Relation to Def

AARHUS UNIVERSITET

« The Microservice Architectural Style
— Components, Connectors, Topology, Semantic constraints

:-Lewis1 Fowler }

Defining Characteristics

Componentization via Services
Organized around Business Capabilities

Products, not Projects

smart endpoints and dumb pipes
Decentralized Governance
Decentralized Data Management
Infrastructure Automation

Design for Failure

Evolutionary Design

CS@AU Henrik Baluan cinisiciisen 5

/v

AARHUS UNIVERSITET

Aspects

/v

AARHUS UNIVERSITET

Coupling and Cohesion

So old, and so difficult to get right
‘it is all about role boundaries’

/v Larry Constantine

AARHUS UNIVERSITET
« Late 1960’ies formulation

— Coupling @
The antidote:
— Information Hiding

« David Parnas ‘_‘_‘_‘_.

. Content Common Control Stamp Data
— Encapsulation

. _ Tight Loose
* An inside and outside
More interdependency Less interdependency
More coordination Less coordination
More information flow Less information flow

« Shaw
— Itis not the functionality per se, it is the packing

/v

AARHUS UNIVERSITET

« To rephrase the previous software reuse historical
treatment, much of every new tech-hype has been about
a new scheme for packing software into a deploy unit

Modules (modula 2)
Objects (simula/smalltalk) :
CBS:

SOA:

Microservices:

Packaging

Language packaging
Language packaging

Static deployments

Dynamic deployments
Dynamic deployments at scale

* Note that packing does not really help on coupling

/v An OO Experience

AARHUS UNIVERSITET

* My early OO experience usually ended in one of two
places
— A mesh of highly interconnected objects ®
— A god class that starved any other object from behavior ®

« The Mediator Pattern

— Intent: Object that encapuslates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and lets you vary their interaction
iIndependently.

— Head On book: Centralize complex control and data flow between
related objects

/v Visually

AARHUS UNIVERSITET
* Replace high interconnectivity with central Mediator

T -

Liability: Is what???

CS@AU Henrik Beerbak Christensen

11

/v

AARHUS UNIVERSITET
 API Gateway | et

APl Gateway pattern

- { !)
Internat | . : »| Order Service
patierns Is + I
getOrder () [! :
] . et T b Im.}ry
1 iPhone/ o getDelivery () | v aareaennes ! Service
essentially the ‘out- o[- .
cansumer . P e DT LT N | e -
application Teeea.,, GEEEILIO R EREEEEET PPV counting

of-process’ S
equivalent to the \
Mediator,.

Firewall :FTGO backend sawimg:
LAN
! ; 1
- ge:Crﬂar-ﬁ_} :"' Order Service :
. yCave: Who plays e .
- . ! |
. iPhone/ - getDelivery()] E;eeliv?w !
? Androld getOrderDetails() AP e nvice \
------------------------------------ - o
the Mediator role” e [] .
applcation | [', .| Accounting
Servi
P v
* But note: S i TR
L] \ 'I getTickst () : - Kitchen
Y | ! Sarvice
| L

— Smart services, |) e

Lower-performance One API call required Higher-performance
network network

Richardson, p 261

CS@AU Henrik Baerbak Christensen 12

dumb connectors !

/v

AARHUS UNIVERSITET

Compositional Principles

The old GoF
principles of reusable design

/v Worth Mentioning

AARHUS UNIVERSITET
* Principle 1:

* Program to an interface, not implementation
— Make a clear contract between supplier and consumer

* Principle 2:

« Favor object composition, over class inheritance
— Make system as composition of services

/v

AARHUS UNIVERSITET

Bounded Contexts

From Domain Driven Design
(DDD) by Eric Evans...

Newman §3

eV Bounded Contexts

AARHUS UNIVERSITET

« Domain = Set of bounded contexts.

— Bounded context = model elements that are private plus model
elements that are shared externally with other BCs.

— Bounded context = specific responsibility enforced by explicit
boundaries

| . |

— Analogy with living cells — membranes define what can pass

Eric Evans: Domain-Driven Design Book

CS@AU Henrik Baerbak Christensen 16

/v MusicCorp Example

AARHUS UNIVERSITET
« BC: Finance and Warehouse

 Shared model: Stock Item

— However: full stock object not relevant for finance
» Shelf location has no meaning to finance, only value and count

-~

Shelf ‘
— Stock has both an e
internal (hidden) 0.
and eXterna| l Troliey Stock item | L(Stockﬁem }{-Stockrepon ., sgﬁm
(Shared) i Us;s . ;é;lt;ins Shar'ed.model T
representation [— , C
Picker F Picking order ' General ledger
"~ Warehouse — BN Finance

Figure 3-1. A shared model between the finance department and the warehouse

CS@AU Henrik Baerbak Christensen 17

eV Definition?

AARHUS UNIVERSITET

« Example:

— A'return’
» Customer context: print return label, await refund
« Warehouse context: package that will arrive, restocking

 Discussion

— | guess it means there can be several ‘shared models’ for a
concept

« Stock Item for Warehouse, Finance, Customer, ...

CS@AU Henrik Beerbak Christensen 18

Y On a more Language Level

AARHUS UNIVERSITET
* One way of exchange models on BC boundary
— HTTP GET that JSON object from the service

— Broker ‘List<PODO> getListOfMessages()’ in ChatRoom object,
where client has a ChatRoomClientProxy

— Subscribe to ProtoBuf encoded binary object from RabbitMQ on
topic using routing key: “*.measurements.aarhus’

. Models are|PlainOldDataObjects/PODOs.

— Optionally with abstract references ala foreign keys
» For further exchange of ‘models’ that represent these sub PODOs

eV BC as Modules

AARHUS UNIVERSITET

* Bounded contexts form module (CC view: Component)
boundaries

— Module = classic static/compile time software unit, with explicit
Interface(s), Facade pattern

« EXxcellent candidates for later microservices!
— Monolith first tactic. Avoid premature decomposition
— Why
* API refactorings are extremely slow in the remote case...

/v Compare OO Perspective

AARHUS UNIVERSITET

« OOA and OOD

— The obvious old OO way:
» Stockltem Warehouse::getAllltems()

. ~

 Liabilities biroidiy
— Expose internal 0.
.) , ,)
warehouse details st |of ot i

Shared model

— Hard binding through
object reference(s)

‘ General ledger

Warehouse Finance

“p| Picking order |

Figure 3-1. A shared model between the finance department and the warehouse

CS@AU Henrik Baerbak Christensen 21

/v Compare OO Perspective

AARHUS UNIVERSITET
* Fowler ‘BoundedContext’ paper

In those younger days we were advised to build a unified model of the entire business,
but DDD recognizes that we've learned that "total unification of the domain model for
a large system will not be feasible or cost-effective” [1]. So instead DDD divides up a
large system into Bounded Contexts, each of which can have a unified model -

essentially a way of structuring MultipleCanonicalModels.

« WarStory: EPJ domain...
— GEPJ

— HL7 and CDA

CS@AU Henrik Baerbak Christensen

22

/v Business Capabilities

AARHUS UNIVERSITET
« Fowler: Organized around business capabillities

 Bounded contexts provide services to each other

— Warehouse: get stock list
— Finance: set up payroll for new employee

« Shared models contain the information exchanged

« Hidden models (= internal/full models) candidates for the
data management layer

/v

AARHUS UNIVERSITET

Decomposition

« BCs can be a composition of sub BCs

— Heard it before ©?

« Consider org. Boundaries

— If different teams/groups
It may make more sense
to go for decomposition

— Conway'’s law...

e Consider testing

— Nested appr. means less
test doubles...

Warehouse

Order fulfiliment Goods receiving Inventory

Request stock levels

Finance

Figure 3-2. Microservices representing nested bounded contexts hidden inside the
warehouse

Order fulfillment Goods receiving ' Inventory

Request stock levels

Finance

Figure 3-3. The bounded contexts inside the warehouse being popped up into their own
top-level contexts

CS@AU Henrik Baerbak Christensen 24

eV Domains are Stable

AARHUS UNIVERSITET

* One of the first rules of OO design | learned:

— “Domains are more stable than user requests to Ul and
functionality”

— OO modeling was highly ‘domain modeling’
- OOA

 DDD and BC are founded in the same ‘truth’
— Business changes more likely to be isolated to a single BC

* | do not completely agree...

/v

AARHUS UNIVERSITET

Roles and Responsibilities

Loosening the Boundaries from the
Domain

CS@AU Henrik Baerbak Christensen

26

/v Much Bounded Context Hype

AARHUS UNIVERSITET
* Every Microservice book | look into has chapters on DDD

and Bounded Contexts.
 Which is rooted in the domain model!
« | am old enough to have seen that before:

* Object Oriented Analysis and Design

— Talk to customers and write down the nouns. These are the
classes. Then write down the verbs that are associated with

these nouns. These are the methods.

« Experience then showed that it was a lot of bullsh...

VeV Domain is not All

AARHUS UNIVERSITET
 Domain classes are important but there are so much
more to complex software systems than domain
concepts.

 Example:

— 2016 SkyCave consists of 97 classes. Only three of them are
domain classes!

Cave
1

— Rest is about: - Responsble ot g
« Distribution f \

. P e rS I Ste n Ce mfrid -= fuvatar fc::.tl::‘i;er MOVESs
o Varlablllty Management — / migizs};?gnms.imeracts
. Dependency In]ECtIOn ;a.:.;ocatiunlnthg 1

QA, like availability, performance, ...

CS@AU Henrik Baerbak Christensen 28

eV Domain is not All !

AARHUS UNIVERSITET

« Large classes of important software designs cannot be
explained from a purely Domain focus!

 Example: Design Patterns

— Strategy pattern:
» Encapsulate algorithm and let it vary independently of consumer

* Absolutely no counterpart in any domain

— And still a central software architectural tool in the architect’s
toolbox

Y Stronger Conceptual Framework

AARHUS UNIVERSITET

* Roles, Responsibilities, Behavior, S
and Protocol FLEXIBLE,
RELIABLE

— The Order Concept ,‘,’;;I;’,‘J::f;;;,‘:';‘i
* But ——
— The responsibilities associated with
handling an Order
« Leads to more fine-grained e]

abstractions @
 More “-able’ than noun interfaces

CS@AU Henrik Baerbak Christensen 30

/v The Central definitions

AARHUS UNIVERSITET

« The central concepts:
— Behaviour: What actually is being done
« "Henrik sits Sunday morning and writes these slides”
— Responsibility: Being accountable for answering request
» "Henrik is responsible for teaching responsibility-centric design”
— Role: A function/part performed in particular process
» "Henrik is the course teacher”

— Protocol: Convention detailing the expected sequence of
Interactions by a set of roles

« "Teacher: ‘Welcome’ => Students: stops talking and starts listening”

/v | see the Trend Already

AARHUS UNIVERSITET

« FaaS: Function as a Service

— A Responsibility that is set free from its prison in a bounded
context, or adomain concept.

 The Strategy Pattern in a new Packaging!

* Roles are often invented independent of domain, as just
a cohesive collections of responsibilities
— Kindergarten example: The Flyer role...
— Car example: Is it an umbrella? Is it umbrella behavior?
— (anyone read Larman? ‘Pure Fabrication’ principle)

VeV So...

AARHUS UNIVERSITET

« Bounded Contexts and DDD are fine starting points
— Just as domain understanding was it in OOA and OOD

« But do not let it restrict you

CS@AU Henrik Beerbak Christensen 33

/v

AARHUS UNIVERSITET

DRY or Not DRY

Do not Repeat Yourself
Or maybe you should © !

V4V DRY

AARHUS UNIVERSITET

« Step five of the TDD rhythm
— Step 5: Refactor to remove duplication

« Duplicated code is root of all evil

— Dual maintenance, fixing a bug once-and-for-all is very difficult,
etc. etc. etc.

« Then what about the shared models? And connector
Implementations/client libraries

Y SkyCave Example

AARHUS UNIVERSITET
« The battle-hardened quote service

<« c Q‘ A quote.baerbak.com:6777 /msdo/vl/quotes/13

4} Most Visited @ | gang med Firefox @ Web Slice Gallery @ Weekplan for SWEA
J50M Raw Data Headers

Save Copy Collapse &All Expand &ll 7

author: “Albert Einstein”

v guote: "Education is what remains after one has forgotten what one has learned in school.”

number: 13

 Why not have a shared library with the quote PODO?

— Class quotePodo { String author; String quote; int index; int
statuscode; }

CS@AU Henrik Baerbak Christensen 36

eV DRY downside

AARHUS UNIVERSITET

* You create hard bindings in the form of shared library
dependencies
— Both producer and consumer depend upon quote-lib:1.7.3
— May create ‘lock-step’ versioning
 Library update propagages across all services
— AntiPattern: The Distributed Monolith

— Begins to dictate the programming language ©
« Cannot import maven libs in python, to my knowledge

 Bottomline: Relaxed about DRY across service boundaries
— Programming level: Do not put the ‘shared models’ in shared libs !

VeV Connectors

AARHUS UNIVERSITET

« What about library implementations of connectors?
— Aka ‘client libraries’?

« Example: Our ‘RealQuoteService’ implementation — why
did | not just hand it out to you?
— (Would be an easy exercise, then ©)

* Newman
— Risk of server logic creeping into the connector logic

« Example of ‘it works’

— Amazon Web Service SDK
 Client lib for the AWS REST api

— But developed by other team + community, not the AWS team !!!

/v

AARHUS UNIVERSITET

Monolith First Pattern

/v

AARHUS UNIVERSITET

Fowler

This pattern has led many of my colleagues to argue that you shouldn't start a new

project with microservices, even if you're sure your application will be big enough

to make it worthwhile. .

Going directly to a
microservices
architecture is risky

& (

a — 3
|

@-®
©%

A monolith allows you to
explore both the complexity
of o system and its
component boundaries

As complexity rises start
breaking out some
Microservices

CS@AU Henrik Baerbak Christensen

Continue breaking out
services as your knowledge
of boundaries and service
management increases

40

/v My Opinion

AARHUS UNIVERSITET

* Right, | agree totally
— Tool support so much better for in-process communication
— YAGNI principle (you ain’t gonna need it)

« But, still
— As service boundaries starts to materialize, | think it makes sense
to start to apply the architectural style along the boundary, alas
» Order order = coffeeshop.createOrder(Type.Latte, ...);
* May become something like (REST’ifying the communication)
» OrderModel orderModel = new OrderModel(Type.Latte, ...);
» OrderResult result = coffeeshop.serviceCall(ORDER, orderModel);
* Order order = result.getOrder();
— That s, ‘Order’ without any deep references. Only a PODO!

CS@AU Henrik Baerbak Christensen 41

Y My Opinion

AARHUS UNIVERSITET
« Obijection to this opinion

— You have no transparency, why not encapsulate the concrete
connector style? This code smells RESTish, right?

* ltis a really good objection, but...

— Nygard: Integration point
* Must be analyzed in terms of availability, performance, security, ...
* | have to code time-outs, circuit breakers, chunky
interface, ..., for these connectors! No transparency

anyway!

CS@AU Henrik Beerbak Christensen 42

/v

AARHUS UNIVERSITET

Outlook

/v Hexagonal Architectures

AARHUS UNIVERSITET

Hexagonal architecture 1s an alternative to the layered architectural style. As figure 2.2
shows, the hexagonal architecture style organizes the logical view in a way that places
the business logic at the center. Instead of the presentation layer, the application has
one or more inbound adapters that handle requests from the outside by invoking the
business logic. Similarly, instead of a data persistence tier, the applicaton has one or

more outbound adapters that are invoked by the business logic and invoke external

applications. A key charactenistic and benefit of this architecture is that the business
logic doesn’t depend on the adapters. Instead, they depend upon it

« Alternative to layered style

CS@AU Henrik Baerbak Christensen

44

/v

AARHUS UNIVERSITET

 Benefits

— BL independent of
presentation and
data access

— Easier testing /
decoupling

— Often need for many
e.g. Ul adapters (web,
mobile app, legacy, ..)
anyway

CS@AU

Visually

Inbound adapter Inbound adapter

N /

- L
Some
Message
Browsar = controller
= / Consumer
Foo
Sarvice
/ Business logic Message broker
A Messaging
- interface
Inbound port _/ i\
P Repository K\
interface I'I Message
‘\ producer
T2
= .
-~ | —
| | \\

i DAO
, .
/ I'n,'. Outhound adapter
\
iy
é \\'"‘ Outhound port

Outbound adapter —

Henrik Baerbak Christensen 45

V4V So...

AARHUS UNIVERSITET
« What has that to do with microservice architectures?

* Nothing, excepts as another way of structuring the kind of
applications that most often are candiates for micro
service architectures ©

/v

AARHUS UNIVERSITET

Pattern Languages

4

AARHUS UNIVERSITET

CS@AU

NAXNING

With examples in Java

List of Patterns

Application architecture patterns
Monaolithic architecture (40)
Microservice architecture (40)
Decomposition pattems

Decompose by business capability (51)
Decompose by subdomain (54)
Messaging style patterns

Messaging (85)

Remote procedure invocation (72)
Reliable communicatlons patterns

Circuit breaker (78)

Service discovery patterns
3rd party registration (85)
Clientside discovery (83)
Self-registration (82)
Server=side discovery (85)

Transactlonal messaging patterns

Polling publisher (98)
Transaction log tailing (09)
Transactional outbox (08)

Data consistency patterns
Saga (114)

Business loglc design patterns
Aggregate (150)

Domain event (160)

Domain model (150)

Event sourcing (184)
Transaction script (149)

Querying patterns

API composition (223)
Command query responsibility segregation

(228)

Henrik Baerbak Christensen

External API patterns

API gateway (259)

Backends for frontends (265)
Testing pattemns

Consumer-driven contract test (302)
Consumer-side contract test (303)
Service component test (335)

Securlty patterns
Access token (354)
Cross-cutting concerns patterns

Externalized configuration (361)

Microservice chassis (379)

Observabliity patterns
Application metrics (373)
Aundit logging (377)

Exception tracking (376)
Health check API (366)
Log aggregation (368)

Deployment patterns

Deploy a service as a container (303)
Deploy a service as a VM (300}
Language-specific packaging format (387)
Service mesh (380)

Serverless deployment (416)

Sidecar (410)

Refactoring to microservices patterns
Anti-corruption layer (447)
Strangler application (432)

Recommendable Book

48

/v

AARHUS UNIVERSITET

Recent Analysis

By Peter Daugaard Rasmussen

CS@AU Henrik Baerbak Christensen

49

\ 4
AARHUS UNIVERSITET

CS@AU

Henr

Microservices

Monolith

Availability

Scalability: Can scale individual
services, making it possible to set
different rules for scaling per service.
Can scale in all dimensions (X, Y and

Z)

State and caching: Since services are
scaled independently, services with
caching can also be scaled as they
need.

Fault tolerance: Microservices
are distributed and therefore have a
higher degree of network complexi-
ties.

Containerization: Containers sup-
port microservices’ independable
scaling and fine granularity well.

Scalability: All components within
the Monolith are scaled equally.
Components cannot be scaled indi-
vidually. Can only scale in X and Z
dimensions.

State and caching: When hori-
zontal scaling the monolith, the new
instances also need to cache every-
thing.

Fault tolerance: Everything within
the monolith runs in the same process
and errors in one area can crash the
system.

Containerization: Containers can
be used with monoliths, but they
cannot use it to scale components
individually.

Interoperability

Modularisation and interfaces:
Stronger boundaries as it is harder to
make bad integrations.

Modularisation and interfaces: Eas-
ier to violate boundaries.

Modifiability

Wrong cuts: it is harder to fix wrong
cuts in a microservice architecture.

Versioning: can wuse versioning
to make changes that would be
breaking backward compatibility.

Technology stack: Services can
be implemented using different
technology stack. This may also
make it easier to innovate due to the
possibility to try out new technolo-
gies alongside the old. However a
high level of technology diversity
may cause additional operational
overhead.

Development: changes can be
made and deployed in isolation.

Wrong cuts: wrongly placed busi-
ness logic can more easily be moved
between business areas. As the inte-
grations are made at compile time.

Versioning: less need for ver-
sioning as integrations are made at
compile time.

Technology stack: Hard or nearly
impossible to change technology
stack and more difficult to upgrade
libraries as they have more depend-
ing on them.

Development: will often require
coordination when making changes.
Merge conflicts will also be more
prominent

\ 4
AARHUS UNIVERSITET

CS@AU

Henrik

Performance

Network latency and overhead: Has
network overhead and latency.

Network latency and overhead: Has
no network overhead or latency.

Testability

Unit, integration and system tests:
Harder to automate integration and
system tests as the system is spread
across multiple processes. There is
also more to test in these integrations.

Debugging and logs: Harder to

trace down errors across services.

Unit, integration and system tests:
Large test suite compared to the
smaller test suites of microservices.

Security

Larger attack surface: Has a larger at-
tack surface due to having more net-
work communication. But has a natu-
ral data segregation because each ser-
vice owns its own data.

Buildability

Governance and development:
development work can be done in
isolation per service. Decisions can
also be made in the teams du to
decentralised governance. However
there will often be dependencies be-
tween teams that reduce the upside
of this and other processes needs
to be implemented to avoid silo
development (Beal 2019).

Infrastructure: Has a high up-
front investment in infrastructure
- Microservice Premium (Fowler
2015a). It also requires the develop-
ers to have a broader skill set to be
able to do devops.

Infrastructure: Easier to get started
with. Arguably faster to develop as
less infrastructure is needed

Cross cutting concerns: Easier
to share cross cutting concerns.

Deployability

Deployment: Services are indepen-
dently deployable. Deploying one
service only makes changes to that
service.

Continuous delivery: Easier to
implement Continuous delivery as
the services are fine-grained.

Deployment: Hasier and simpler to
deploy everything together. Can be
harder to automate as over time it
may accumulate a larger technology
stack and have special or manual

needs.

Continuous delivery: Large mono-
liths can hinder Continuous delivery
due to a higher need for coordi-
nation. Both in development and
deployment.

/v

AARHUS UNIVERSITET

Consistency

Consistency: Needs to handle even-

tual consistency.

Consistency: Can have transactions
spanning multiple business areas in
which nothing happens oreverything

happens.

CS@AU

CIOServices

Table 2: Summary of the disadvantages and advantages of mi-

Henrik Baerbak Christensen

52

/v

AARHUS UNIVERSITET

Summary

Vav Software Architecture...

AARHUS UNIVERSITET
e ... Is difficult!

In software engineering and software architecture design, architectural decisions are design decisions that
address architecturally significant requirements; they are perceived as hard to makel!l and/or costly to
change @]

* One definition
— (forgot the author, and is probably misquoting)
— The things we wished we had done differently ©

« IMO it is about ‘cutting the cake in the right way’
— Part the ‘whole’ into ‘suitable’ pieces that collaborate
— Usually, no ‘right way’ just ‘less bad ways’ to pick from...

